direct product, metacyclic, nilpotent (class 2), monomial
Aliases: C22×3- 1+2, C18⋊2C6, C62.3C3, C3.2C62, C9⋊2(C2×C6), (C2×C18)⋊3C3, C6.5(C3×C6), (C3×C6).4C6, C32.(C2×C6), (C2×C6).7C32, SmallGroup(108,31)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32 — 3- 1+2 — C2×3- 1+2 — C22×3- 1+2 |
Generators and relations for C22×3- 1+2
G = < a,b,c,d | a2=b2=c9=d3=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c4 >
(1 23)(2 24)(3 25)(4 26)(5 27)(6 19)(7 20)(8 21)(9 22)(10 28)(11 29)(12 30)(13 31)(14 32)(15 33)(16 34)(17 35)(18 36)
(1 14)(2 15)(3 16)(4 17)(5 18)(6 10)(7 11)(8 12)(9 13)(19 28)(20 29)(21 30)(22 31)(23 32)(24 33)(25 34)(26 35)(27 36)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)
(2 8 5)(3 6 9)(10 13 16)(12 18 15)(19 22 25)(21 27 24)(28 31 34)(30 36 33)
G:=sub<Sym(36)| (1,23)(2,24)(3,25)(4,26)(5,27)(6,19)(7,20)(8,21)(9,22)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36), (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (2,8,5)(3,6,9)(10,13,16)(12,18,15)(19,22,25)(21,27,24)(28,31,34)(30,36,33)>;
G:=Group( (1,23)(2,24)(3,25)(4,26)(5,27)(6,19)(7,20)(8,21)(9,22)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36), (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (2,8,5)(3,6,9)(10,13,16)(12,18,15)(19,22,25)(21,27,24)(28,31,34)(30,36,33) );
G=PermutationGroup([[(1,23),(2,24),(3,25),(4,26),(5,27),(6,19),(7,20),(8,21),(9,22),(10,28),(11,29),(12,30),(13,31),(14,32),(15,33),(16,34),(17,35),(18,36)], [(1,14),(2,15),(3,16),(4,17),(5,18),(6,10),(7,11),(8,12),(9,13),(19,28),(20,29),(21,30),(22,31),(23,32),(24,33),(25,34),(26,35),(27,36)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)], [(2,8,5),(3,6,9),(10,13,16),(12,18,15),(19,22,25),(21,27,24),(28,31,34),(30,36,33)]])
C22×3- 1+2 is a maximal subgroup of
Dic9⋊C6 C62.C32 3- 1+2⋊A4 C62.6C32 C62.9C32
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 6A | ··· | 6F | 6G | ··· | 6L | 9A | ··· | 9F | 18A | ··· | 18R |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 6 | ··· | 6 | 6 | ··· | 6 | 9 | ··· | 9 | 18 | ··· | 18 |
size | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 1 | ··· | 1 | 3 | ··· | 3 | 3 | ··· | 3 | 3 | ··· | 3 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 |
type | + | + | ||||||
image | C1 | C2 | C3 | C3 | C6 | C6 | 3- 1+2 | C2×3- 1+2 |
kernel | C22×3- 1+2 | C2×3- 1+2 | C2×C18 | C62 | C18 | C3×C6 | C22 | C2 |
# reps | 1 | 3 | 6 | 2 | 18 | 6 | 2 | 6 |
Matrix representation of C22×3- 1+2 ►in GL4(𝔽19) generated by
1 | 0 | 0 | 0 |
0 | 18 | 0 | 0 |
0 | 0 | 18 | 0 |
0 | 0 | 0 | 18 |
18 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
7 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 11 |
0 | 1 | 0 | 0 |
11 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 11 | 0 |
0 | 0 | 0 | 7 |
G:=sub<GL(4,GF(19))| [1,0,0,0,0,18,0,0,0,0,18,0,0,0,0,18],[18,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[7,0,0,0,0,0,0,1,0,1,0,0,0,0,11,0],[11,0,0,0,0,1,0,0,0,0,11,0,0,0,0,7] >;
C22×3- 1+2 in GAP, Magma, Sage, TeX
C_2^2\times 3_-^{1+2}
% in TeX
G:=Group("C2^2xES-(3,1)");
// GroupNames label
G:=SmallGroup(108,31);
// by ID
G=gap.SmallGroup(108,31);
# by ID
G:=PCGroup([5,-2,-2,-3,-3,-3,147,253]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^9=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^4>;
// generators/relations
Export